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"Kinematically controlled systems" are mechanical systems with constraints 
depending on parameters which can be varied while the system moves. A sult- 
able program for the varlatlon of these parameters depending on the current 
state of the system and on time, could Impose on the motion some desired 
properties. 

Kinematically controlled systems are closely connected with the servo- 
systems of Begen-Appell[l]. Appell's servo-systems are different from systems 
usually considered in mechanics. In our work we develop a new approach to 
such systems. They are treated from the beginning as controlled systems. 
We introduce the concept of a parametric constraint (Section 1) as the basic 
characterizing element of a kinematically controlled system. We show equa- 
tions for the possible displacements of the system (Section 2), we analyze 
the correctness of the law for the control of the system (Section 3), we 
give the modification of the Gauss principle for kinematically controlled 
systems (Section 5). The Indices used In this paper take on the following 
values 

i = I,2 ,**-1 3n; p, ax = I,2 ,..., r; q’s = 1,2 ,..., s; v = I,2 ,..., k; E = 1, 2 ,..., r + s 

1. A system of n material points moves with respect to a Cartesian co- 

ordinate system. Let m, = m2 = m3, x1, x,, x3 be the masses and the coordl- 

nates of the first point of the system, m4 = m5 = m6, x4, x5, x8 be the mas- 
ses and the coordinates of the second point, and so on. Let some bodies 

without mass constrain the motion of the points of the system forming holo- 

nomic constraints which are given by Equations 

Such constraints can be realized if the bodies constraining the systems 

are freely absorbed by it, or if their motion (or deformation) Is assigned 

initially. We shall allow however that among the bodies constraining the 

system there will be such whose motion (or deformation) depends on parameters 

which could suitably vary while the system moves. Such constraints will be 

called "constraints depending on parameters", or simply parametric constraints, 

and the parameters will be called the control parameters. 
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Let us consider, for example, a ring sliding freely on a rod which is 

hinged at one of its ends. If the conditions of the problem are such that 

we can vary the angle of Inclination between the vertical and the rod while 

the ring is sliding, then the constraint on the ring will be parametric and 

the angle of Inclination between the rod and the vertical will be the control 

parameter. 

Let us denote by pl, . . ..pr the control parameters of he considered me- 

chanical system and let Equations of its parametric constraint be 

(1.2) 

As in (1.1) Equations (1.2) are obtained from the conditions of preserving 

the contact between the points of the system and the constraining bodies. 

when t, plJ..., pr are fixed then Equations (1.2) and(l.1) express the geo- 

metry of the constraints of the system. 

In the considered example the question of the parametric constraint is 

written in the form x2 = x1 tan 9, where 13 is the angle of inclination be- 

tween the rod and the vertical (the control parameter), .Q, x2 are the co- 

ordinates of the ring with the origin of the coordinate system coinciding 

with the hinge, and the x1 -axis Is along the vertical. The geometry of the 

constraint Is a line passing through the origin. 

Equations of the parametric constraints (1.2) contain the control para- 

meters. Assigning to the parameters definite values which depend on the 

current state of the system and on time, we are controlling the system In 

its motion. In the given case the control will be kinematic, since it Is 

realized through the constraints of the system. If control of the system 

is realized through forces, then it is a dynamic control. When the expressdon 

for the control parameters of a system contain its state parameters and the 

time, then it will be called "the law of control of the system". Let the 

law of control for our mechanical system be 

(1.3) 

where xl', . . . . x3,,' are the velocity components of the points of the system 

along the coordinate axes. 

Parametric constraints are generalizations of the conventional, time de- 

pending constraints and reduce to them if the law of control depends only 

on time. 

2. The constraints of the system are assumed to be ideal, that is such, 

that the work of the reactions of the constraints for all possible dis- 

placements equals identically zero. The possible displacements of a system 

will be understood a6 they are usually understood for the holonomlc systems, 

meaning all possible infinitely small displacements of the system occuring 

in every considered instant of time and obeying the geometry of the con- 



KinelMticuly controlled rcMnicu aystas 17 

stralnts. Let ua denote by I),,..., Rsn the components of the reactions of 

the constraints along the coordinate axes, by bxl,..., bx,, the components 

of all the possible displacements of the system. Then condition for the 

constraints of the system to be Ideal can be written as 

XRi6Xi = 0 

This Equation should be valid for all possible displacements of the sys- 

tem. By Newton's law 

Rt = wxi’ - Xi 

Here X1', Xs", Xs", Xl, X2, Xs are, respectively, the components of the 

real acceleration of the first point of the system and of the force acting 

on It along the coordinate axes; X;, X6”, X8”, X,, X,, X6 are, respectively, 
the components of the real acceleration of the second point and of the force 

acting on It, and so on. Consequently 

X( 
mixt” - Xi) 6% = 0 W) 

In this way we have obtained the fundamental equation of mechanics. In 

the considered case accelerations of all the points of the system are real 

and the equation satisfied for all possible displacements of the system. In 

this way we have established that the principle of D'Alembert-Lagrange Is 

applicable to the controlled mechanical systems. 

We shall derive now the equations of motion for the controlled system 

which we consider. Let us write first the equations for all the possible 

displacements of the system. By definition of the possible displacements 

these Equations have the usual form 

~~&q=o, i -g&x* = 0 (2.2) 
Let us mention, however, that the relations (2.2) were obtained by con- 

sidering t, Us,..., uk as constants; In other words, the differentiation 

In (2.2) Is carried out only with respect to the explicitly appearing coordl- 

nates. 

Now, by the usual procedure, we derive from (2.1) and (2.2) Equations 

(2.3) 

where Acand pc are undetermined multipliers. Equations (2.3) together with 

constraint Equations (1.1) and (1.2) and control Equations (1.3) form a 

complete system of equations determining accelerations of the points of the 

system and the undetermined multipliers X and u . Equations (2.3) are 

equations of motion of a kinematically cot%rollez system in the form of 

Lagrange equations with multipliers. 

Bor example, let us write the equations of motion of the ring in the 

previously mentioned example. Taking into consideration that the ring is 
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subjected only to the parametric constraint 

cp (2, y, 0) = x2--21 tg 8 = 0 

we obtain from (2.3) desired Equations 

(2.4) 

mxlR =x1-p tge, x2”= x2 +p 

These equations have to be taken simultaneously with (2.4) and with the 

law of control 0 = 0 (t, 21, 52, xl', 22'). 

Similarly to the systems with conventional constraint8 for which we can 

formulate theorems on the motion of the center of mass and on the angular 

momentum, we can formulate these theorems for systems with parametric con- 

straints. 

A. If among all the possible displacements of a system there Is a 

translatory displacement when a system is moving Asa rigid body along any 

fixed direction, then the center of mass of the system moves along this 

direction, thus the system can be replaced by a point containing the mass 

of the whole system, and the force acting on this point equals the sum of 

all active forces acting on the system. 

B. If among all the possible displacements of a system there is a 

rotation of a system when a system rotate8 as a rigid body about a fixed 

axis, then the time derivative of the angular momentum of the system about 

this axis equals the moment about this axis of all the active forces acting 

on the system. 

We prove these theorems using the relations (2.1) and the proof does not 

differ from the one for systems with conventional constraints. 

The theorem on kinetic energy does not apply to the systems with paramet- 

ric constraints. A controlled system moves, in general, while the value8 

of the control parameters vary. Under these conditions thereal displacements 

of the system are not among the possible displacements, and the formal con- 

dition for the kinetic energy theorem is not satisfied. The kinetic energy 

theorem does not apply to the systems with parametric constraints because 

the kinetic energy of such a system varies not only on account of the work 

done by active forces acting on the system but also on account oftheactions 

forced by the control of the system. 

3. Bya "correct law" we shall call such a law of control of a system, 

which will make the motion possible and unique. The requirement of correct- 

nes8 is not trivial. Let us show Some simple example8 of Incorrect laws of 

control. 

Let US assume that a point masS is subjected to the parametric %nStraintS 

Xl i- x2 = PI, x1 --x2 = p2 (3.1) 
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where p1 and p2 are the parameters of control. Let us 

Equations 

Pl = 237 p2=--2;c,+x, 

in one case and Equations 

prescribe control 

p1 = x3, P2 = --2X, -+ CT3 + 1 

in another case. Equations (3.1) are independent. The system of equations 

obtained from the above equations by eleminating the control parameters is 

in the first case dependent and in the second case Incompatible. 

A more refined phenomenon can be illustrated on the example of a ring 

slipping freely on a smooth rod. 

Let us prescribe Equations controlling the rod 

0 = *-1 T 

where c Is a constant. From above Equation we shall find the control para- 

meter In the constraint equation. We obtain 

X: + 522 = aa 

The ring ought to move on the circumference of radius a. But such a mo- 

tion of a ring is, in general, Impossible. In this way the prescribed con- 

trol equation for the system is forcing a condition on the motion of a ring, 

which cannot be satisfied. 

Let us find for the control equation the condition of correctness. It 

consists obviously in this, that the system of Equations (2.3),(1.1),(1.2) 

and (1.3) should determine uniquely accelerations of the system for every 

permissible state of the system. Equations (2.3) give explicit expressions 

for accelerations of the system through the forces and undetermined multl- 

pliers. Therefore, the condition for corrsctness of the control equations 

reduces to the condition of a unique determination of the undetermined 

multipliers XP and pa. Using Equations (1.3) we shall eliminate the con- 

trol parameters from Equations (1.1) and (1.2). By taking the time derlva- 

tives of Equations (1.1) and (1.2) we obtain Equations 

&4EiZiV -t A< = 0 (3.2) 

for the kinematically permissible accelerations of the particles of the sys- 

tern. The number of these equations equals the number of Equations (l.l)and 

(1.2), therefore it equals the number of multipliers h and vs. Substituting 

the expressions for x1",...., xsn" from Equations (2.3 ! into (3.2), weobtaln 

the following system which determines the undetermined multipliers X and cl,, 
P 

r]a& -t- Z]~G+~ + cg = 0 (3.3) 
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The system (3.3) has a unique solution, which means that the control 
equation Is correct, if the determlnant of the system 

does not vanish. 

fill . . * bll 

A = a21 . . * b21 

..I. * * 

. . . 

. . . 

. . . 
(3.5) 

In order that the control equation be regular it is necessary, in particu- 

lar, that the system of Equations (3.2) be linearly independent. 

Indeed, if Equations (3.2) are dependent, then there exist multipliers 
xk, not all of them zero, such that Equations 

are valid. 

Multiplying above Equations, respectively, by (1 / mi) c?fo f aXi and adding 

them we obtain, using 

SMlarly, we find 

the notation in (3.4) 

p@& = 0 

In this way the elements of the determinant A are linearly dependent. 

This means that d = 0 and consequently the control equation is incorrect. 

That Is what we wanted to show. 

4. In order to exhibit the inner contents of the requirements of correct- 

ness, in the cosldered metric space of the variables xi, we shall prescribe 

the metrics of this space In the form 

d&’ = 2 ~~d~i2 

and integrate the motion of the system as a motion of a point in this space. 

The accelerations x1",..., .rSa" of the points of our system determine the 

acceleration of the integrated point. We shall call it the acceleration of 

the system. 

We shall resolve every kinematically permissible acceleration of the SYS- 

tern into two components, one which is tangent and one which is normal to the 

geometry of the constraint of the system. 
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We have 
Xi” = Ui + Vi (4.1) 

The set of all the possible displacements of the system forms a linear 

space, tangent to the geometry of the constraints of the system. Therefore 
the components ui of the tangential component of the acceleration of the 

system should satisfy the equation of the possible displacements 

(4.2) 

The components v, of the normal component of the acceleration, for all 

possible displacements, should satisfy Equation 

expresslng”the condition of arthogonallty of the vectors Q,..., vg. and 

bXl,..., bxa. in our metric space. 

Prom the condition (4.3) and from Bquatlons (2.1), for all possible dls- 

placements, we find for the normal component of the acceleration of the sys- 

tem 

where,AP* and pc* are arbitrary multipliers. Taking Into account these ex- 
pressions, Equations (4.1) become 

(4.4) 

Lemma 1. Every klnematlcally permlsslble acceleration of the sys- 

tem has a unique component tangent to the geometry of the constraints of the 

system. 

It Is obvious that to prdve this lennna It Is sufficient to show that when 

Xl”,..., x3,” are prescribed, then we can select uniquely the multipliers 

XP* and u * so that ul,... us., 

the relatyons (4.2). 

determlned by Equations (4.4), would satisfy 

For this purpose we substitute Equations (4.4) into (4.2). Using the 

notation 

*+ The general geometric theory of the metric spaces can be found ln the 

book [ 21 . 
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we obtain the gquations 

which should be satisfied by the undetermined multipliers Xn*anci p,+Isothat 

I&,..., ual would possess the property required by the lemma. 

We shall prove that the determinant of this system does not vanish. Let 

us assume that It vanlshes. Then we can find nP and vo not all zero, such 

that following Equations will be satisfied 

Ellmlnatlng in them ppn, r,,, Qpt, and Sar and introducing the notation 

we shall reduce these Equations to the form 

(4-Q 

(4.7) 

Multiplying Equations (4.6), respectively, by m,w, and adding them we 

obtain 

IZ 

By (4.7) the right member of this Equation, equals identically zero. 

Consequently, all uli = 0. But then by (4.6) comes out that Equations of 

ConStraintS (1.1) and (1.2) depend on each other, which contradicts the 

hypothesis. 

In this way we have shown that the determinant of the system (4.5) does 

not vanish, which means that the undetermined multipliers An* and p7* are 

unique. The Lemma is proved. 

Lemma 2. If the control equations of the system are correct, then 

the tangential component of the kinematically permissible acceleration of 

the system can be arbitrarily prescribed; the Mnematically permissible 

acceleration is uniquely determined by Its tangential component. 

It is obvious that we prove the Lemma if we show that for any system 

x61,..., LL30’ the multipliers Xp* and go* can be uniquely selected In such a 

way that Equations (4.4) would determine kinematically permissible accelera- 

tion of the system. Bor this purpose we substitute Equations (4.4) in the 

relations (3.2) and we obtain Equations for the kinematically permissible 

acceleration, which, using the notation (3.4), are 



Klnematically controlled mechanical systems 23 

and the multipliers A * and ps* 
P 

must satisfy these Equations to atlsfy the 

conditions of the Lemma. Since the control equations have to be correct 

the determinant of this system (the determinant (3.5)) does not vanish and 
consequently the undetermined multipliers )i * and ps* are unique. The Lemma 

P 
is proved. 

The two Lemmas permit the formulation of the following Theorem: 

If the constraints (1.1) and (1.2) are Independent, and the control equa- 

tions of the system are correct, then we have a one to one correspondence 

between the klnematically permissible accelerations of the system and their 

tangential components. Besides, the set of the tangential components of 

the accelerations Is unbounded (with the exception, of course, of the de- 

termining relations (4.2)). 

5. The Gauss principle as applied to a system with conventional con- 

straints formulates the extremal property of the real acceleration, select- 

ing It among the klnematlcally permissible accelerations of the system. 

The proper Gauss principle Is not applicable to a system with the para- 

metric constraints, however a variat'lon of It, formulated below, does apply. 

Among the klnematlcally permissible accelerations of a system the real 

one possesses a tangential component which makes the function 

sT( Ui-$)a (5.1) 

a minimum. 

To prove this we shall substitute the expansion (4.1) In the fundamental 

equation of mechanics (2.1). Taking Into account condition (4.3) we obtain 

x(miui - Xi)6Xi = 0 (5.2) 

The quantities ul,..., us, represent the tangential component of there& 

acceleration of the system. We shall select arbitrarily a kinematically 

permissible acceleration of the system. Let us denote by ml,..., mm its 
tangential component. Since the two tangential components (u and m) satIs 

(4.2), their difference must also satisfy (4.2). Consequently, the dlffer- 

ences ui - m, determine a vector of a displacement of the system. ThIsmeans 

that Equation (5.2) can be rewritten as 

2 (m&i - Xi) (Ui - Wi) = 0 

Using the Identities 

(4 - 2) (Ui - Vi) = $ [ ( Ui - 3)’ - (Wi - 2)’ + (Ui - l/Ii)“] 
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From which we obtain 

and this is what we wanted. 

In this way we have proved that the burns of the function (5.1) corre- 

sponds to the tangential component of the real acceleration of the system. 

The same applies to any function 

(5.3) 

where u,*,..., u3$ Is the tangential component of the real acceleration of 

the system, which has been relieved of some of the constraints. 

Indeed, for a system which is relieved of some of the constraints, the 

relation (5.2) is written as 

where (6*x1,..., 6*x3,,) Is the possible displacement of the relieved system. 

The possible displacements of the initial system are a subject of the possl- 

ble displacements of the relieved system. Consequently, last Equation can 

be written as 

2 (miUi* - Xi) 8Zi = 0 

Substracting it from Equation (5.2), we obtain 

Replacing (5.2) by the above relation and repeating word by word the 

previously carried considerations, we obtain the previously obtained result 

with the difference, that the function (5.1) Is replaced by (5.3). 

The function (5.1) is a special ease of the function (5.3) when the sys- 

tem is relieved of all constraints. 

We shall show that the modified Gauss principle applied to the case of 

conventional constraints reduces to the proper Gauss principle. 

We are going to show first, that in the systems with conventional con- 

straints the normal component (Us,..., us") of the klnematically permissible 

accelerations of the system Is independent of Its tangential component. 

Indeed, in the preceding article we had for the component (v~,..., van) 

the following relations: 



If (u, , . * . , uSn) is the tangential component of the klnematically per- 
missible acceleration of the system, then the undetermined multipliers 1 * 

should be calculated from the relations (4.8). It is seen from 
P 

and p; 

(3.2) that in a system with conventional constraints we can set 

On the other hand u! satisfies the relations (4.2). Consequently, for 

the conventional systems 
XAEiiui = 0 

and the quantities u, drop out from (4.8). In this way the undetermined 

multipliers A * and n,*, 
P 

and consequently the quantities ul,are independent 

of the kinematically permlsaible tangential component of acceleration. Thls 

is what we required. 

From these considerations follows, that the normal component of the ac- 

celeration of the system is only a function of the state of the system and 

all the kinematically permissible accelerations of the system in its pre- 

scribed state differ only in their tangential components. 

Let u1 + u*,...> l&n + US" be the real acceleration of the system. Then 

its arbitrary kinematically permissible acceleration, as we have shown, can 

be written as W1 + v~,..., wn + van, where Q,..., m,, is its tangential 

component. 

By using Gauss's principle and by (4.1) we can write the function which 

is minimized as 

2, = 

Let E, be the value of our function corresponding to the real accelera- 

tion of the system. 

We shall consider the difference 

&a--- Z, =I x 7 Ui + Vi ( __s)a_g+ + vi-$,’ 

By expanding it we find 

The differences ui - mr, as we have mentioned before, determine the vec- 

tor of a possible displacement of the system. Consequently, by (4.3) the 

last sum in the right-hand term of the above Equation vanishes and 



26 V.I. Kirgetov 

This last equation proves what we wanted. 

BIBLIOGRAPHY 

1. Appell, P., Teoretiche&ala mekhanika (Theoretical mechanics). 
Flzmatgiz, Vol.2, 1960. 

2. Eisenhardt, L.P., Rimanova geometriia (Riemanhian geometry). IL, 1948. 

Translated by T.L. 


