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"Kinematically controlled systems" are mechanical systems with constraints
depending on parameters which can be varied whlle the system moves. A sult-
able program for the variation of these parameters depending on the current
state of the system and on time, could impose on the motion some desired
properties.

Kinematically controlled systems are closely connected with the servo-
systems of Begen-Appell[1]. Appell's servo-systems are different from systems
usually considered 1n mechanics. In our work we develop a new approach to
such systems. They are treated from the beginning as controlled systems.
We introduce the concept of a parametric constraint (Section 1) as the basic
characterizing element of a kinematically controlled system. We show equa-
tions for the possible displacements of the system (Section 2), we analyze
the correctness of the law for the control of the system (Sectlon 3), we
glve the modification of the Gauss principle for kinematically controlled
systems (Section 5). The indices used in this paper take on the following
values

i=1,2,...,3n; p,n=12,...,r 6,v=12,...,8; v=1.2,..., k¢t =1,2,...,r+ s

l. A system of n material points moves with respect to a Cartesian co-
ordinate system. Let m, =m, =m3, x,, X, X3 be the masses and the coordi-
nates of the first poilnt of the system, my =mg =mg, x,, X5, Xs be the mas-
ses and the coordinates of the second point, and so on. Let some bodies
without mass constrain the motion of the points of the system formlng holo-
nomic constraints which are given by Equations

fp(xl"”' Tgn, B) =0 (1.1)

Such constralnts can be realized 1f the bodies constraining the systems
are freely absorbed by it, or if their motion (or deformation) is assigned
initially. We shall allow however that among the bodies constralning the
system there will be such whose motion (or deformation) depends on parameters
which could suitably vary while the system moves. Such constraints will be
called "constraints depending on parameters", or simply parametric constraints,
and the parameters will be called the control parameters.
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Let us consider, for example, a ring 8liding freely on a rod which is
hinged at one of its ends. If the conditions of the problem are such that
we can vary the angle of inclination between the vertical and the rod while
the ring is sliding, then the constraint on the ring will be parametric and
the angle of Inclination between the rod and the vertical will be the control
parameter.

Let us denote by p,,...,p, the control parameters of he consldered me-
chanical system and let Equations of its parametric constraint be

Py(TyseeesTans £y Pyoeens Pi) =0 (1.2)

As in (1.1) Equations (1.2) are obtailned from the conditions of preserving
the contact between the points of the system and the constraining bodies.
When £, p,,..., p, are fixed then Equations (1.2} and{1.1) express the geo-
metry of the constraints of the system.

In the considered example the question of the parametric constraint is
written In the form x, = x; tan 6§, where 8 is the angle of inclination be-
tween the rod and the vertical (the control parameter), x,, x, are the co-
ordinates of the ring with the origin of the coordinate system coinciding
with the hinge, and the x;-axis 1s along the vertical. The geometry of the
constraint is a line passing through the origin.

Equations of the parametric constraints (1.2) contailn the control para-
meters, Assigning to the parameters definite values which depend on the
current state of the system and on time, we are controlling the system in
its motion. In the glven case the control will be kinematic, since it 1is
realized through the constraints of the system. If control of the system
is realized through forces, then it is a dynamic control, When the expression
for the control parameters of a system contaln its state parameters and the
time, then 1t will be called "the law of control of the system". Let the
law of control for our mechanical system be

Po =By (61 s Ty 5 oo T (1.9

where x;’, ..., X3, @are the velocity components of the polints of the system
along the coordinate axes.

Parametric constraints are generalizations of the conventional, time de-
pending constraints and reduce to them if the law of control depends only
on time.

2. The constraints of the system are assumed to be ideal, that is such,
that the work of the reactions of the constraints for all possible dis-
placements egquals identically zero. The possible displacements of a system
willl be understood as they are usually understood for the holonomlc systems,
meaning all possible infinitely small displacements of the system occuring
in every considered instant of time and obeying the geometry of the con-
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stralnts. Let us denote by R,,..., R;, the components of the reactlons of
the constraints along the coordinate axes, by 6x,,..., dx;, the components
of all the possible displacements of the system. Then condition for the
constraints of the system to be ideal can be written as

:E}Riéza = 0

This Equation should be valid for all possible displacements of the sys-
tem. By Newton's law

Ry = mz" — X

Here :c,_', :L‘g”, 1:3', Xl, X,, Xa are, respectively, the components of the
real acceleration of the first point of the system and of the force acting
on it along the coordlnate axes; .1:4", :1:5", .‘C,", X4, X,, X, are, respectively,
the components of the real acceleration of the second point and of the force
acting on it, and so on. Consequently

S sz’ — Xi) 8z = 0 2.1)

In this way we have obtained the fundamental equation of mechanics. In
the consldered case accelerations of all the polnts of the system are real
and the equation satisfied for all possible displacements of the system. In
this way we have established that the princlple of D'Alembert-Lagrange 1s
applicable to the controlled mechanical systems.

We shall derive now the equations of motion for the controlled system
whlch we consider. Let us write first the equations for all the posslble
displacements of the system. By definition of the possible displacements
these Equatlons have the usual form

of o
—P 8 — _le — 2
) 7 dui =0, o o0 =0 2.2)
Let us mentlon, however, that the relations (2.2) were obtained by con-
sidering t, u;,..., u, as constants; in other words, the differentiation
in (2.2) 1s carried out only with respect to the explicitly appearing coordi-
nates,

Now, by the usual procedure, we derive from (2.1) and (2.2) Equations
of o9,
no_ [ _Te
mizi’ = Xi+ Y he bz, + Dl 52, (2.3)
where \ and p, are undetermined multipliers. Equations (2.3) together with
constraint Equations (1.1) and (1.2) and control Equations (1.3) form a
complete system of equations determlning accelerations of the polnts of the
system and the undetermined multipliers xp and Hg* Equations (2.3) are
equations of motion of a kinematically controlled system in the form of
Lagrange equations with multiplilers.

For example, let us write the equations of motion of the ring in the
previously mentioned example. Takling into consideration that the ring is
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subjected only to the parametric constraint
o (&, ¥, 0) =22—21 Lg 6 =0 (2.4)
we obtain from (2.3) desired Equations
mr,” = X1—p tg 0, 2= Xz +p

These equations have to be taken simultaneously with (2.4) and with the
law of control @ == (t, z1, x2, ", Z2').

Similarly to the systems with conventional constralnts for which we can
formulate theorems on the motion of the center of mass and on the angular
momentum, we can formulate these theorems for systems with parametric con-
straints.

A. 1If among all the possible displacements of a system there is a
translatory displacement when a system is moving isa rigid body along any
fixed direction, then the center of mass of the system moves along this
direction, thus the system can be replaced by a point containing the mass
of the whole system, and the force acting on this point equals the sum of
all active forces acting on the system.

B. If among all the possible displacements of a system there is a
rotatlion of a system when a system rotates as a rigid body about a fixed
axls, then the time derivative of the angular momentum of the system about
this axis equals the moment about this axis of all the active forces acting

on the system.

We prove these theorems using the relations (2.1) and the proof does not
differ from the one for systems with conventional constralnts.

The theorem on klnetic energy does not apply to the systems wilth paramet-
ric constraints. A controlled system moves, 1n general, while the values
of the control parameters vary. Under these condltions the real displacements
of the system are not among the possible displacements, and the formal con-
dition for the kinetic energy theorem is not satisfied. The kinetic energy
theorem does not apply to the systems with parametric constraints because
the kinetlc energy of such a system varies not only on account of the work
done by active forces acting on the system but also on account of the actions
forced by the control of the system.

3., By a "correct law" we shall call such a law of control of a system,
which will make the motion possible and unique. The requirement of correct-
ness 1s not trivial. Let us show some simple examples of incorrect laws of

control.

Let us assume that a point mass is subjected to the parametric constraints

xr, + %y =Py, Zy =Ty = P (3.1)
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where p, and p, are the parameters of control. Let us prescribe control

Equations
P1 = T3 pe = —2%, {7,
in one case and Equatilons
P = s, ps = —2z, 4 15 -1

in another case. Equations (3.1) are independent. The tsystem of equations
obtained from the above equations by eleminating the control parameters is
in the first case dependent and in the second case incompatible.

A more refined phenomenon can be illustrated on the example of a ring
slipping freely on a smooth rod.

Let us prescribe Equations controlling the rod
T2
— sin-! —
0 a
where ¢ 1s a constant. From above Equation we shall find the control para-

meter in the constraint equation. We obtain
3,12 + zzz = a2

The ring ought to move on the clrcumference of radius @¢. But such a mo-
tion of a ring is, in general, lmpossible. In this way the prescribed con-
trol equation for the system is forcing a condition on the motion of a ring,
which cannot be satisfied.

Let us find for the control equation the conditlion of correctness. It
consists obviously in this, that the system of Equations (2.3),(1.1),(1.2)
and (1.3) should determine uniquely accelerations of the system for every
permissible state of the system. Equations (2.3) give explicit expressions
for accelerations of the system through the forces and undetermined multi-
pliers. Therefore, the condition for corrzctness of the control equations
reduces to the condition of a unique determlnation of the undetermined
multipliers kp and Hg - Using Equations (1.3) we shall eliminate the con-
trol parameters from Equations (1.1) and (1.2). By taking the time deriva-
tives of Equations (1.1) and (1.2) we obtain Equations

NAziz” -+ Ay =0 (3.2)

for the kinematically permissible accelerations of the particles of the sys-
tem. The number of these equations equals the number of Eguations (1.1)and
(1.2), therefore it equals the number of multipliers A and p,. Substituting
the expressions for x,”,...., xa,” from Equatlons (2.33 into (3.2), we obtain
the followlng system which determines the undetermined multipliers xp and Hq

M azehe + Dl bzops + ez = 0 (3.3)
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where

1 99,
% = P At 5 bio = 2o Asi g,

-

1
Cg = Z-;’-;;Agixi + Ag (3.4)

The system (3.3) has a unique solution, which means that the control
equation 1s correct, if the determinant of the system
ayg . . .bu e

A= asy . . by .. (3.5)

does not vanish.

In order that the control equation be regular it is necessary, in particu-
lar, that the system of Equations (3.2) be linearly independent.

Indeed, 1f Equations (3.2) are dependent, then there exist multipliers
%z, not all of them zero, such that Equations

Dz =0

Multiplying above Equations, respectively, by {1 / mi) 8f, / 82; and adding
them we obtain, using the notation in (3.%)

are valid.

E'Kgdgp =0
Similarly, we find
Zugbga = 0

In this way the elements of the determinant A are llnearly dependent.
This means that o = 0 and consequently the control equation is lncorrect.
That 1s what we wanted to show.

¥, In order to exhibit the inner contents of the requirements of correct-
ness, 1n the cosldered metric space of the variables x,, we shall prescribe
the metrics of this space in the form

ds? = 2 m;dxiz
and integrate the motion of the system as a motlon of & point in thls space.

The accelerations x,”,..., xs,” of the points of our system determine the
acceleration of the integrated point. We shall call 1t the acceleration of
the system.

We shall resolve every kinematically permissible acceleration of the sys-
tem into two components, one which is tangent and one which is normal to the
geometry of the constraint of the system.
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We have
" =u + (4.1)

The set of all the possible displacements of the system forms a linear
space, tangent to the geometry of the constralints of the system. Therefore
the components y, of the tangential component of the acceleration of the
system should satisfy the equation of the possible displacements

3, o,
Z'a—xilh = 0, 3.’! u; = 0 (4.2)

The components v, of the normal component of the acceleration, for all
possible displacements, should satisfy Equation

Emiv,-bxi =0 (4.3)

expressing**the conditlion of orthogonality of the vectors v,,..., vs, and
8x;,..., bxs, 1n our metric space.

From the condition (4.3) and from Equations (2.1), for all possible dis-
placements, we find for the normal component of the acceleratlon of the sys-

o= 3 2 S

where ,xp* and uo* are arbitrary multipliers. Taking into account these ex-
pressions, Equations (4.1) become

tem

%, 1 9%,
" =2 + D he* — z, =4 Dl m, 07, (4.4)

ma

Lemma 1 . Every kinematically permissible acceleration of the sys-
tem has a unique component tangent to the geometry of the constralnts of the
system.

It is obvious that to prove this lemma 1t is sufficlent to show that when
X1”,..+.5 Xx3,” 8re prescribed, then we can select uniquely the multipliers
X * and Mg * 80 that u;,... us,, determined by Ejuations (4.4), would satisfy
the relations (4.2).

For thils purpose we substitute Equations (4.4) into (4.2). Using the
notation

A, _ gt %0,
Zmi 8::,- 6xi ! 9o = my dz; dz;
1 9g, 9, _ 1 %, 9,

[~
a
&l

Tan = Z m, 0z, oz, “my 9z, 9z,

*% The general geometric theory of the metric spaces can be found in the
book [2].
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we obtalin the Eguations

prn + Eqptp’ * = Zﬁ zi" ’ 2 Tanhn™ -+ Z sarl‘w = I;” (4.5)

which should be satisfied by the undetermined multipllers xn*and u;,sothat
Upss-+, Uz, WOuld possess the property required by the lemma.

We shall prove that the determinant of this system does not vanish. Let
us assume that it vanishes. Then we can find ”p and Vo not all zero, such
that following Equations will be satisfled

Exppp:r -+ Z Volar = 0, ZKQQM + Zvcsat =0

Eliminating In them Ppn, Fon, Gpvy &nd Ser and introducing the notation

% 1 0P, 1
0; = Z P 81‘ m + Z “axi Tn—l (46)
we shall reduce these Equations to the form
af, 0,
Zé“x—i(ﬂi;‘—zo, 25&;0){20 (47)

Multiplying Equations {4.6), respectively, by m,w, and adding them we
obtain

D mio® = Y% 5 "—‘ﬂ)z 4—2‘%

By (4.7) the right member of this Equation, equals 1identlcally zero.
Consequently, all w, = O. But then by (4.6) comes out that Equations of
constraints {1.1) and {1.2) depend on each other, which contradicts the
hypothesis.

In this way we have shown that the determinant of the system (4.5) does
not vanish, which means that the undetermined multipliers An* and “T* are
unique. The Lemma is proved.

Lemma 2 . If the control equations of the system are correct, then
the tangential component of the kinematically permissible acceleration of
the system can be arbitrarily prescribed; the kinematically permissible
acceleration 1s uniquely determined by its tangential component.

It is obvious that we prove the Lemma if we show that for any system
Upseses Uzas the multipliers X * and “c* can be uniquely selected in such a
way that Equations (4.4) would determine kinematically permissible accelera-
tion of the system. For this purpose we substitute Ejuations (4.4) in the
relations (3.2) and we obtain Equatilons for the kinematically permissible
acceleration, which, using the notation (3.4}, are

E azoho® -+ M biapa® + Y Asitts + Az = 0 (4.8)
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and the multipliers A * and po* must satisfy these Equations to atisfy the
conditions of the Lemma. Since the control equations have to be correct
the determinant of this system (the determinant (3.5)) does not vanish and
consequently the undetermined multilpliers x; and pa* are unique. The Lemma
is proved.

The two Lemmas permit the formulation of the following Theorem:

If the constraints (1.1) and (1.2) are independent, and the control equa-
tions of the system are correct, then we have a one to one correspondence
between the kinematically permissible accelerations of the system and their
tangential components. Besides, the set of the tangential components of
the accelerations is unbounded (with the exception, of course, of the de-
termining relations (4.2)).

5. The Gauss principle as applied to a system with conventional con-
straints formulates the extremal property of the real acceleration, select-
ing 1t among the kinematically permissible acceleratlions of the system.

The proper Gauss principle i1s not applicable to a system with the para-
metrlc constraints, however a varlation of 1it, formulated below, does apply.

Among the kinematically permissible accelerations of a system the real
one possesses a tangential component which makes the function

g m; X, \?
27 (=) 64)

a2 minimum.

To prove thls we shall substitute the expansion (4.1) in the fundamental
equation of mechanies (2.1). Taking into account condition (4.3) we obtain

Z(miui —_ Xi) 61‘1 = 0 (52)

The quantities u,,..., us, represent the tangential component of the real
acceleration of the system. We shall select arbitrarily a& kinematically
permissible acceleration of the system. Let us denote by wy ..., ws, its
tangential component. Since the two tangential components (u and p) satisfy
(%.2), their difference must also satisfy (4.2). Consequently, the differ-
ences u, — w; determine a vector of a displacement of the system. This means
that Equation (5.2) can be rewritten as

z(miui —Xi) (uy —w;) =0

Using the 1ldentitles
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we find

my X\ m; s X, \® my
ET(“‘_V) “E‘“é“(w“‘z:) T2t —w)f =0

t

.

From which we obtain

S5 (w— ) <25 ()

3

and this is what we wanted.

In this way we have proved that the minimum of the function (5.1} corre-
sponds to the tangentlal component of the real acceleration of the system.
The same applies to any function

L ¥)\2
S (Wi — w*) (5.3)
where u*, ..., U3 18 the tangential component of the real acceleration of

the system, which has been relleved of some of the constraints.

Indeed, for a system which is relieved of some of the constraints, the
relation (5.2) is written as

Z(miui* — X;) 6*93,' =0

where (6%*¢,,..., 6*x;,) 18 the possible displacement of the relleved system.
The possible displacements of the initlal system are a subject of the possi-
ble displacements of the relieved system. Consequently, last Equation can
be written as

> (miu* — Xi) 8z = 0

Substracting it from Equation (5.2), we obtain

Em; (ui — ui"‘) Ga:i =0

Replacing (5.2} by the above relation and repeating word by word the
previcusly carried considerations, we obtain the previously obtained result
with the difference, that the function (5.1) is replaced by (5.3).

The function (5.1) is a special case of the function (5.3) when the sys-
tem 1s relieved of all constraints.

We shall show that the modifled Gauss principle applied to the case of
conventlonal constraints reduces to the proper Gauss principle.

We are golng to show first, that in the systems with conventional con-
straints the normal component {(v;,..., vs,) of the kinematically permissible
accelerations of the system is independent of its tangential component.

Indeed, in the preceding article we had for the component (2y .05 Dan)
the followlng relations:
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af a

PR G W LA

mivi = 3 he¥ g b R g
If (uy,.-.5 uan) 1s the tangential component of the kinematically per-
misslble acceleration of the system, then the undetermined multipliers xp*

and u¥ should be calculated from the relations (4#.8). It is seen from
(3.2) that in a system with conventional constraints we can set

ﬂfp / 611
H AE,iu - uoc?s / ax;

On the other hand u, satisfies the relations (4.2). Consequently, for
the conventional systems
A il = 0

and the quantities u, drop out from (4.8). In this way the undetermined
multipliers A * and “d*’ and consequently the quantities v,,are independent
of the kinematically permisglble tangentlial component of acceleration. This

is what we required.

From these considerations follows, that the normal component of the ac-
celeration of the system is only a function of the state of the system and
all the kinematically permlssible accelerations of the system in 1ts pre-
scribed state differ only in their tangential components.

Let w3 + vy,...5 ua, + vs, be the real acceleration of the system. Then
its arbitrary kinematically permissible acceleration, &s we have shown, can
be written as w, + vy ,..., wg, + Us,, Where w,,..., ws, 15 its tangential
component.

By using Gauss's principle and by (4.1) we can write the function which

is minimized as X, \2
gy = 2 T’i ws _{_ Vi _7'
w 2 1 1 ’ni

Let z, be the value of our function corresponding to the real accelera-~
tion of the system.

We shall consider the difference

m, X\ 2 n. A2
. t . S 3 _ 11 ) R 1
Zu 2w = 2 32 (u' + v m ) 2 2 (w' + v my )
By expanding 1t we find
X

m. 2 my X.\2
2y — Zyp = 2"21'(”'_,7{:) —2 -‘2‘“(11'1—*._,_—1) -{—Zmi(ui—-wi)m

The differences u, — w,, &8 we have mentloned before, determine the vec-
tor of a possible displacement of the system. Consequently, by (4.3) the
last sum in the right-hand term of the above Equation vanlshes and
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ey = S AN T 1)2
u ’”—Zz t m; 22(1 m;

This last equation proves what we wanted.
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